In addition to exploring model failures in the UI, you can also script directly against the entries that make up the confusion matrix.
Full python client docs are available here, and a brief example follows.
PROJECT ='YOUR_PROJECT'INF_ID ='experiment_1'DATASET_ID ='dataset_name'al_client = al.Client()al_client.set_credentials(api_key="YOUR_API_KEY")metrics_manager = al_client.get_metrics_manager(PROJECT)# Specify your query here. The union of queries will be returned.# See the python client docs for the exhaustive listqueries = [ # All Confusions metrics_manager.make_confusions_query(),# A specific Query metrics_manager.make_cell_query('gt_class', 'inf_class'),# A full row / column metrics_manager.make_confused_as_query('inf_class')]confusions_opts ={'confidence_threshold':0.5,'iou_threshold':0.5,'queries': queries,'ordering': metrics_manager.ORDER_CONF_DESC}confusions = metrics_manager.fetch_confusions(DATASET_ID, INF_ID, confusions_opts)# type: ignoreprint('num_results: ', len(confusions['rows']))print(confusions['rows'][0])