Aquarium
  • Getting Started
    • Intro to Aquarium
    • Key Concepts
    • Account Setup and Team Onboarding
    • Quickstart Guides
      • 2D Classification
      • 2D Object Detection
      • 2D Semantic Segmentation
    • Announcements
    • Python Client API Docs
  • Data Privacy
    • Data Sharing Methodologies
      • Generate Local Credentials from AWS
      • Generating Access-Controlled URLs
      • Granting Aquarium Read Access to an AWS S3 Bucket
    • Anonymous Mode
  • Integrating With Aquarium
    • Creating Projects in Aquarium
    • Uploading Data
      • Labeled Datasets
      • Model Inferences
      • Unlabeled Datasets
    • Exporting Data
      • Batch Exports
      • Webhooks
    • Updating Datasets
  • Working In Aquarium
    • Managing Projects
    • Viewing Your Dataset
    • Analyzing Your Metadata
    • Querying Your Dataset
    • Organizing Your Data
    • Inspecting Model Performance
    • Analyzing Model Inferences
    • Finding Similar Elements Within a Dataset
    • Comparing Models
  • Common End-To-End Workflows
    • Assess Data Quality
    • Collect Relevant Data
    • Evaluate Model Performance
  • Python SDK
    • Python Client API Docs
    • Working With the SDK
    • Code Snippets and Examples
      • Segments
      • Confusion Matrix Scripting
      • Collection Campaign Scripting
  • Advanced Concepts
    • Adding Custom Embeddings
    • Dataset Checkpoints
    • Collection Campaign Classifier
    • Embeddings
    • URL formatting
    • Metrics Methodology
    • Complex Label Class Maps
    • Webhooks
      • Integrating with Labeling Using Webhooks
    • Custom Metrics
      • Stratified Metrics
    • Troubleshooting
      • Troubleshooting Common Web Issues
Powered by GitBook
On this page
  • Task
  • Project
  • Ontology
  • Dataset
  • Frame

Was this helpful?

  1. Getting Started

Key Concepts

Definition of terms and their associated context in Aquarium

PreviousIntro to AquariumNextAccount Setup and Team Onboarding

Last updated 2 years ago

Was this helpful?

Task

Tasks in Aquarium map to common computer vision task types.

Currently supported task types in Aquarium include:

  • Classification

  • 2D Object Detection

  • 3D Object Detection

  • Semantic Segmentation

  • Instance Segmentation

Different task types (and even sub types within tasks) often require different data formats. Configuring various components of Aquarium may require declaring the task type, so that we can correctly support the required data.

Many capabilities in Aquarium extend to uncommon or non-standardized task types. If you have a question about whether we support a task or a specific workflow, contact us .

Project

Projects are the highest level of organization for data in Aquarium. Projects allow you to organize your data and collaborate in one central location. Each project may contain one or more datasets.

Every project in Aquarium has:

  • A globally unique name

  • A single task type (e.g. 2D object detection, semantic segmentation, etc.)

  • A single ontology

Ontology

An ontology (also referred to as a taxonomy or label class map) enumerates entities and their relationships for a given machine learning task. Ontologies in Aquarium must explicitly define every label and every inference within a given project.

Ontologies in Aquarium allow you to define display names, colors, relationships between training and inference classes, and many other metadata fields. These definitions are used throughout the platform to display data, calculate metrics, and otherwise support Aquarium's various workflows.

Note that ontologies are assigned at the project level and apply to all datasets within a given project.

2D Object Detection Ontology Example for the RarePlanes Dataset
label_class_map = al.LabelClassMap(entries=[
    al.ClassMapEntry(
        name='Small Civil Transport/Utility', 
        class_id=1, 
        color=(23, 232, 229)),
    al.ClassMapEntry(
        name='Medium Civil Transport/Utility', 
        class_id=2, 
        color=(23, 169, 232)),
    al.ClassMapEntry(
        name='Large Civil Transport/Utility', 
        class_id=3, 
        color=(23, 86, 232)),
    al.ClassMapEntry(
        name='Military Transport/Utility/AWAC', 
        class_id=4, 
        color=(153, 35, 92)),
    al.ClassMapEntry(
        name='Military Bomber', 
        class_id=5, 
        color=(232, 67, 21)),
    al.ClassMapEntry(
        name='Military Fighter/Interceptor/Attack', 
        class_id=6, 
        color=(230, 153, 11)),
    al.ClassMapEntry(
        name='Military Trainer', 
        class_id=7, 
        color=(224, 31, 202)),
])

Dataset

Datasets are the core organizational construct within Aquarium. In the most basic sense, a dataset is a grouping of imagery, metadata and annotations.

Aquarium supports two primary types of datasets, each of which has distinct capabilities.

Labeled Datasets

  • Labeled datasets are the most common type of datasets in Aquarium and are made up of imagery, metadata and ground truth annotations. Examples of labeled datasets may include your training, validation and test sets.

  • Labeled datasets allow you to assess data quality, evaluate model performance, run data curation workflows, and set up production-ready ML processes.

Unlabeled Datasets

  • Unlabeled datasets are a more specialized dataset type and are made up of imagery and proposed regions of interest (usually inferences generated by a model).

  • Unlabeled datasets are used as a part of data curation and sampling workflows in Aquarium. They serve as the search space for rare or interesting scenarios found within your labeled datasets.

  • Unlabeled datasets are typically much larger than labeled datasets.

Datasets in Aquarium are intended to be modified over time (for example as new data is acquired and added to the training or test sets). All of these modifications are tracked in Aquarium, enabling you to view and interact with the various states of your dataset over time.

Frame

A frame is the atomic unit of data within a dataset.

  • In the base case a frame is made up of an electro-optical image (as a .PNG, .JPEG or any other common format) and its structured metadata (as JSON).

  • In more advanced cases a frame may be made up of multiple images (a primary image and context imagery or data from other sensor types) and its structured metadata (as JSON or other formats). The more complex structure is common for autonomous driving tasks with LIDAR, Radar or other sensor types and in robotics tasks.

  • Labels (and associated metadata) and inferences (and associated metadata) are associated with frames.

Frames in Aquarium are intended to be modified over time (for example as labeling providers return new labels, or as new metadata becomes available). All of these edits are tracked in Aquarium, enabling you to view and interact with the various states of your dataset over time.

Learn more about creating projects using the

Learn more about defining an ontology and assigning it to a project using the

Learn more about creating labeled and unlabeled datasets using the

Learn more about defining frames and assigning them to a dataset using the

here
Aquarium Python SDK.
Aquarium Python SDK.
Aquarium Python SDK.
Aquarium Python SDK.